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FOREWORD

This summary report describes research performed on a program

sponsored by the Office of Naval Research, Department of the Navy,

under contract N00014-74-C-0241. The research was performed under

the general technical direction of Dr. Robert Pohanka and

Dr. Arthur M. Diness, Metallurgy Branch, Office of Naval Research.

The report covers work performed during the period of

February 1, 1980 to August 31, 1982. The writers are pleased to

acknowledge the contributions of their associates at Ceramic

Finishing Company.
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I. INTRODUCTION

Research on this contract which extended from 1974 to 1982 has

included the following topics related to localized impact damage:

1. Development of a comprehensive analytical model for

elastic-plastic impact by particles for calculating

the contact radius, indentation radius, impact force,

penetration time, depth of damage, remaining strength,

contact time and coefficient of restitution.

2. Localized impact damage in stressed members consisting

of glass, alumina and silicon nitride.

3. Branching of Hertzian cracks.

4. Energy loss mechanisms during impact.

5. Impact on a viscous medium (glass).

6. Impact damage in transformation toughened zirconia.

7. Comparison of static and impact damage in ZnS.

8. Load-radial crack size relations in ZnS.

9. Comparisons of contact damage in hot pressed and

CVD ZnS.

10. Elastic recovery at static loading and impact

indentations in MgF2.

11. Effect of mechanical impedance on the distribution

of stress wave energy during impact.
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1.2. Methods of improving the impact damage resistance of

ceramics including low elastic midulus surface layers,

friable surface layers and compressive surface layers

(silicon nitride, silicon carbide, alumina, stc.).

In addition to the above topics which directly involve contact

damage, the following supporting research topics were investigated:

1. Crack branching in ceramics.

2. Strengthening by heat treatments.

3. Strengthening by compressive surface stresses including

preparation of a monograph on this topic.

44. Comparison!; of flaws at fracture origins in various

ceramics.

5. Crack growth from small flaws in larger grains in alumina.

The results of these investigations show that, at least in some

cases, reasonable predictions of crack propagation and strength

degradation are possible. The impact damage resistances of a variety

of ceramics can be improved by surface treatment. Increasing the

fracture toughness (KIc ) of the underlying material is also

effective. The roles of hardness and Young's modulus are more

complex in the impact case compared with the static case because of

the effect of these properties on the impact load and stress

wave energy.

The present report consists of five papers which are presented

as separate sections. A list of papers, reports and presentations

follows.
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ABSTRACT

Hot pressed zinc sulfide was indented by spherical indenters

under static and impact loading. The static and impact damage

characteristics were compared with earlier results for CVD zinc

sulfide showing that hot pressed zinc sulfide is less resistant to

contact damage than CVD zinc sulfide.

I
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Polycrystalline zinc sulfide can be prepared in a transparent form

suitable for use in optical components by at least two methods, hot pressing

(HP ZnS) and chemical vapor deposition (CVD ZnS). Evans and Wilshaw(I )

characterized static contact damage at spherical indentations in CVD ZnS

and other ceramics and determined that crack extension depends primarily

on the indentation radius and the ratio of hardness to toughness. Shockey,

Dao, and Curran (2 ) characterized the impact damage at spherical indentations

in CVD ZnS and correlated the damage with the plastic impression strain.

(3-5)
Kirchner, Richard and Larchuk characterized static and impact damage

at spherial iLidentations in CVD ZnS and used the resulting data to evaluate

a theory of elastic-plastic impact, to correlate the radial crack length

with load and indentation radius, and to demonstrate the importance of

strain rate effects. Van der Zwaag, Hagan and Field (6 ) investigated deform-

ation mechanisms at static contacts in CVD ZnS. Other investigators(
7 1 0 )

have studied water drop impact on ZnS. In these investigations, contact

damage in HP and CVD ZnS has not been compared.

The HP ZnS was purchased as a cylindrical plate 3 in. diam. x 6mM

thick. This plate was indented on the large surfaces which are perpendicular

to the hot pressing direction by static and impact loading using spherical

glass indenters, 3mm in diameter . The static loads ranging from 111-890N

were applied by an Instron testing machine. The HP ZnS plate was placed on

the load cell and the spheres were fastened to the crosshead. A compressed

gas (N2) gun was used to accelerate the spheres for the impact tests.

The plate was mounted perpendicularly to the path of the sphere. The

impact and rebound velocities were measured from multiple images of

* IRTRAN 2, Eastman Kodak Co., Rochester, N.Y. 14650

** Glass spheres, No. 3000, Walter Stern, Inc., Port Washington, N.Y.



the sphere on a photograph obtained by illuminating the sphere at known I
time intervals using a stroboscope and recording the images using a camera

with an open shutter. The velocities of the glass spheres ranged from

18-73 m-s

The damage was characterized by optical and scanning electron micro-

scopy and the results were compared with earlier results obtained for CVD

ZnS indented on the surface perpendicular to the deposition direction.

Comparison of microstructure and properties of HP and CVD Zns

The microstructures of HP and CVD ZnS differ because of the differences

in the forming method. The HP ZnS has a grain size of 1-5 um which does

not vary significantly with orientation in the plate. The CVD ZnS is

deposited in the form of columnar grains oriented roughly parallel to the

deposition direction. These grains have an aspect ratio of 8:1 and are

up to perhaps 50 um in length. In the plane perpendicular to the deposition

direction the grain size is quite variable ranging from about 1-20 om and

the grains are approximately equidimensional.

The properties of the HP and CVD ZnS are compared in Table I using

data from various sources. The KIC of Cie HP ZnS was measured by the single

* edge notched beam method for a crack propagating parallel to the hot

press4ng direction yielding 0.44 MPam , a value substantially lower than

the literature values for CVD ZnS. This result suggests that cracks will

* propagate farther in HP ZnS than in CVD ZnS. This crack propagation

direction is relevant to propagation of the radial and median cracks. Com-

parisons of the diameters of static indentations in the HP and CVD ZnS

* show that the hardnesses are approximately equal (1.9 GNm 2).

0e



TABLE I 12

Comparison of Properties of HP and CVD ZnS

HP ZnS CVD ZnS.1

Microstructure (c,d,e,see note )
Grain size, Um 1-5 2-5 in growth plane

9-30-L "L

Crystal habit - columnar grains

Crystal symmetry cubic (a) cubic

Critical stressintensity 1 (f)
factor, MPa ml 0.44 ± 0.08 i

0.75 (g)

0.67
(c )

Density, gcm 3  
4 .0 9(b) 4 .0 8(e)

Elastic properties

Young's modulus, MPa 96,550 (b )  74,500 (e )

Shear modulus, MPa - 41,000

Poisson's ratio 0.30 (c) in growth plane

0.35 L "

Modulus of rupture
at 250C, MPa 97.2 (b )  110.3 (e )

* IRTRAN 2, Eastman Kodak Co., Rochester, N.Y. 14650.
** RAYTRAN ZnS, Raytheon Research Division, Waltham, Mass. 02154.

*** References d and e indicate wider ranges than those listed.
**** Average of two values.

(a) Personal communication with Eastman Kodak Co. (Mr. Fairbanks).

(b) Manufacturer's literature, Eastman Kodak Co.

(c) J. M. Wimmer, "Mechanical and Physical Properties of Chemically
Vapor-Deposited (CVD) Zinc Sulfide," Air Force Materials Laboratory
Report AFML-TR-79-4013 (1979).

(d) D. A. Shockey, K. C. Dao and D. B. Curran, "Nucleation and Growth of
Cracks in CVD ZnS under Particle Impact," SRI International Annual
Report Part II, Contract N00014-76-C-0657 (April, 1979).

(e) Manufacturer's literature, Raytheon Co.

(f) A. G. Evans and T. R. Wilshaw, "Quasi-Static Solid Particle Damage in
Brittle Solids I. Observations, Analysis and Implications," Acta Met.
24,939-956 (1976).

(g) S. van der Zwaag, J. T. Hagan and J. E. Field, "Studies of Contact
Damage in Polycrystalline Zinc Sulfide," J. Mater. Sci. 15 (12)
2965-2972 (1980).

. . .. m m="'"--~m =L mmI~w -" - w ... mlmmm m,= IS
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* Comparison of static and impact loading damage in HP and CVD ZnS

The expected load (P) dependence of the radial crack length (c) in the

* (4)
elastic-plastic case is described by P a dc where d is a contact dimension

Several mechanisms can give rise to this relation including line contact

(11,12)
loading or wedging where d is the length of the contact 1 1  the existence

of an irreversibly deformed zone under the contact where d is the depth of

this zone (1 3 ,1 4 ) and the existence of residual stresses where d is the

length subject to stress (15) In addition, Niihara, Morena and Hasselman (1 6 )

have proposed that a P a c relation applies for Palmquist cracks.

Indentations and cracks formed by static loading in HP and CVD ZnS

are compared in Figure 1, which shows that, compared at approximately equal

indentation radii, the cracks are slightly longer in HP ZnS than in CVD ZnS

and also shows the presence of a lateral crack (the circular shadow) in

the HP ZnS. The load threshold for lateral crack formation is lower in

HP ZnS than in CVD ZnS. Loads of 500-600N are required to cause lateral

cracking in CVD ZnS.

The extent of radial cracking in HP and CVD ZnS is compared in Figure

2. The plots show that the variations of crack length with load in both

materials are equally well represented by P - dic where di is the indentation

4 diameter and that, when compared on this basis, the cracks are longer in

HP ZnS than in CVD ZnS. At high loads the radial cracks in HP ZnS are

*about 30% longer than those in CVD ZnS.

* Impacts using the glass spheres yielded damage that was similar in

magnitude to the damage induced by static loading as shown in Figure 3.

- For specimens impacted at approximately equal velocities, the radial cracks

* are longer in HP ZnS than in CVD ZnS as was the case for static loading.

0I
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HP ZnS (334N Load, r. 250 jim, c r 660 oim, c= 385 uim)

(:Li) ZoS (343N Load, r. 254 jim, cr 585 pm, 0 pim)

Figure 1. Damage induced byv static loading, 39X (HP ZnS and
CVI) ZnS platcs With 3 mm glass spheres).
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12-00

z+
10.0-

08.0-.=.2

" I.0 -80

6o.0

o' 4.0

0 o CVD ZnS

2.0 + HP ZnS

0 2.0 4.0 6.0 8.0 10.0
g (Radial Crack Length)"12 -10 - 2 m 2

Figure 2. Static load divided by Indentation diameter vs square root
of maximum radial crack length (for both CVI) ZnS and HP ZnS
statically loaded with 3mm diameter glass spheres).

Ii~i i .'-' . . ..
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HP ZnS (impact velocity =27 m-s ,r. 286 pim, c =792 pim,
= 276 Prn)

CVD Zns (impact velocity =28.1 m-s ,1 r = 276 p'm, c r 600 p'm,[~C c= 82 vm)ir

Figure 3. Damage induced by impact loading, 39X (HP ZnS and CVD
ZnS plates with 3 mm glass spheres).
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The HP ZnS specimen in Figure 3 also shows a partial lateral crack. The

differences in the radial crack lengths were not consistent throughout the

velocity range. In some cases the radial crack lengths in HP ZnS were much

longer than would normally be expected.

The circumferential cracks formed in the impact indentations are much

better defined than those in the static indentations.

The coefficients of restitution (the ratios of the rebound velocities

to the impact velocities) were calculated. These values were only slightly

different for the two materials and ranged from a maximum of about 0.94

at the low end of the velocity range to a minimum of about 0.76 at the high

4 end of the velocity range. The variations of the kinetic energy loss

with impact velocity were compared. Because of the importance of plastic

deformation as an energy absorption mechanism, differences in kinetic energy

loss are expected to indicate differences in the relative dynamic hardnesses

of the materials. The slightly higher energy losses in HP ZnS indicate

that the dynamic hardness of HP ZnS may be slightly lower that that of

CVD ZnS.

The log-log plots of the kinetic energy loss vs. impact velocity for

both HP and CVD ZnS are essentially linear with slopes of 2.75 and 2.92

O respectively. These slopes can be compared with a value of 2.6 predicted

(17)for elastic impacts by Hunter .This result provides additional evi-

dence that the presence of impact damage, including plastic deformation at

* indentations, does not substantially affect these slopes except at transi-

tions where new energy loss mechanisms become important.

Therefore, it is concluded that at static spherical indentations in

sete by P d c The region in which this relation provides a good
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fit extends to c/ri ratios as great as 7.3, much larger values than wouldii

have been expected based on previous investigations using Vickers indenters (1 8)

which suggests that further investigations of indenter shape and stiffness

might be fruitful. At high static loads the maximum radial crack lengths

Iin HP ZnS are about 30% longer and the numbers of radial cracks are greater

than in CVD ZnS. The threshold loads for lateral crack formation are much

lower in HP ZnS than in CVD ZnS.

Under comparable impact conditions the radial crack lengths are

greater and the cracks are more numerous in HP ZnS than in CVD ZnS. Also,

crushing is more extensive in HP ZnS. The kinetic energy losses during

impact are only slightly greater in HP ZnS than in CVD ZnS.

Observations of longer radial cracks, larger numbers of radial cracks,

a lower threshold load for lateral crack formation and increased crushing

in HP ZnS indicate that HP ZnS is more susceptible to contact damage than

CVD ZnS. This difference is attributable, at least in part, to the dif-

ference in the K values.
IC
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ABSTRACT

Contact damage was induced in CVD zinc sulfide by static and impact

loading using glass spheres. Calculations based on the relationship be-

tween the residual depth of the indentation and the ratio of the hardness

to Young's modulus were used to estimate the dynamic hardness and impact

load. Comparisons of applied loads, threshold loads for crack formation

and crack lengths for static and impact indentations at equal indentation

radii show that predictions of impact damage using data from static load-

ing are inadequate.
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I. INFRUDUCTION

A common approach to investigation of localized impact damage has

been to characterize the damage at static indentations induced by various

loads and to use the results of these observations to predict the type

and extent of impact damage, assuming that, at equal loads, identical dam-

(1-5)
age is induced irrespective of the method of loading. Evaluation of

this assumption is handicapped by the difficulty in measuring the impact

load. However, the validity of the assumption can be evaluated indirectly

by comparing damage at static and impact indentations that have an equal

measurable characteristic such as the indentation radius. Presumably, if

4 the response of the material depended only on the maximum load and not on

the loading rate, each characteristic of the damage observed at equal in-

dentation radii will be the same for both static and impact loads. The

extent of the observed differences will indicate the degree to which the

response differs from the assumption.

The details of the damage induced during impact are important because

of the differing roles of the various types of cracks in the performance

of the material. For example, radial cracks are considered to control the

strength degradation. Lateral cracks control the degradation of optical

U transmission and, combined with crushing, control the erosion rate.
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II. PROCEDURES

When a sufficiently high load is applied to a sphere pressed against

a flat plate, the yield point of the plate material will be exceeded and

a permanent indentation is induced (Figure 1). As the load is removed,

some of the elastic deformation is recovered while the remainder is con-

strained by the irreversibly deformed material resulting in residual

stresses.

In this investigation, zinc sulfide plates (25x25x7mm) were indented

by glass spheres, 3mm diameter, under various loads using an Tnstron test-

ing machine. The materials are identified and the properties of the

plates and spheres are given in Table I. The zinc sulfide consists of

(4)
columnar grains with a high degree of preferred orientation .The ob-

served grain size ranges from one to 40 pim depending esperially on the

orientation relative to the deposition direction. The indentation radius

(r i) was measured in the plane of the surface as indicated in Figure 1.

The indentation radii, numbers of radial cracks and maximum radial and

lateral crack lengths were measured, using a calibrated eyepiece in an

optical microscope for the load range of 84 to 1059 N.

Similar plates were impacted at velocities ranging from 19 to 65 m-s1

by glass spheres accelerated by a gas gun using compressed N2 gas. The

impact and rebounding velocities were measured using photographs with

multiple stroboscopic images of the glass spheres. The spheres were

coated with a thin layer of aluminum to improve their reflectivit'-. The

impact damage was characterized as described above for the static indenta-

tions. In some cases the profiles of the static and impact indentations

were compared, using a profilometer. The results were analyzed and are

presented in the following section.
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Figure 1. Indentation after loading and unloading.
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Table I -i

Material Properties

Proert Material ______Property Glass* ZnS** -

Young's Modulus 70,000 74,100(6)
MPa

Poisson's Ratio 0.30(6)

(in plane of plate)

(6)
Density 2,500 4,090

Kgm
3

Critical Stress 0.7 1(2)

Intensity Factor 0.75(8)

Hpam 0.67(6) (

Hardness 5.3(7) 1.9(2)
GPa

Average Grain Size 
30(2)

jim

* Glass spheres, No. 3000, Walter Stern, Inc., Port Washington, N.Y.
-1

** Chemical vapor deposited zinc sulfide plates, Raytheon Co.,

Waltham, Mass.

I

-
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III. RESULTS AND DISCUSSION

The response of the ZnS plates to static and impact loading was

elastic-plastic, yielding permanent indentations with the indentation

radii increasing with the maximum loads. Ring cracks, radial cracks and

lateral cracks were observed for both static and impact loading as shown

in Figure 2 where the lateral cracks appear as the shaded areas between

the radial cracks. When the damage was observed in cross section, a

clear zone was observed beneath the contact. This zone is relatively

transparent because of the absence of large-scale cracks. However, this

(4)
zone contains dispersed spots that have been identified as pores

* At static indentations, the load thresholds w re 84 N for radial

crack formation and 899 N for lateral crack formation. In the impact tests

measurable indentations, radial cracking, and evidence of lateral crack-

ing were observed at the lowest velocity tested and all higher velocities.

Damage at static and impact sites was compared at approximately

equal indentation radii (Figure 2). When the indentation radii are rela-

tively small, as in Figures 2A (static) and 2B (impact), the radial cracks

formed at the impact sites are fewer in number and smaller than those

formed at the static sites. However, in the impact case, lateral cracks

* initiate at smaller indentation radii as indicated by the lighter area

to the left of the indentation. Also, the ring cracking is much more

visible at the impact site. At larger indentation radii, as shown in

* Figure 2C (static) and 2D (impact), both the radial cracks and the lateral

cracks are larger at the impact site than at the comparable static site.

The lateral cracking at the impact site has produced chipping to the right
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of the indentation. Also, the ring cracking within the impact indentations

has become much more pronounced, causing the contours of these indentations

to appear somewhat irregular, compared with the static indentations.

The irregularities observed in the impact indentations were investi-

gated by profilometer measurements. Figure 3 shows the diametral profiles

of static and impact indentations, compared at approximately equal inden-

tation radii. It should be noted that the vertical scale is ten times the

horizontal scale. The distinguishing features are:

1. The impact indentation is much shallower than the

static indentation.

2. The center of the impact indentation is separated from

the outer rim by substantial circumferential (ring)

cracks, one of which is visible at the boundary of the

dark central area in Figure 2D.

3. Phe central area of the impact indentation has been

pushed down, apparently as a result of shear failure

at the circumferential cracks.

4. The outer portions of the impact profile form a rim

with a much lower slope than that of a comparable static

indentation.

These features indicate that, mechanically, the formation of impact

indentations is much more complex than the formation of static indentations.

(9)
The above results, together with recent equations of Lawn and Howes

were used to estimate the dynamic hardness and the maximum impact load

for this impact. Lawn and Howes expressed the elastic recovery for elastic-

plastic indentations by Vickers indenters in terms of the hardness to

Young's modulus ratio (lifE) obtaining the relation
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Static site Impact site
ri a400 rm ri -2 3961Am

Load a 936N Vo z 61.6 rn/s
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Figure 3. Diametral profilometer traces of static and impact
indentations (ZnS, 3 mm diameter glass spheres). - 1
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2 E T
q Z*.) 1 - 2(1-v )() tan H (1)

where Z is the maximum penetration under load, Z is the depth of the~r

indentation after unloading, H is the hardness, E is Young's modulus,

v is Poisson's ratio, T is the indenter angle and yE and yH are geometrical

factors. In the case of Vickers indenters 'I is fixed by the pyramidal

shape and the rigidity of the diamond. The above equation might be ex-

pected to apply to glass spheres as indenters, despite the different

shape and the elastic deformation if an appropriate value of tan ' can be

estimated in each particular case. Also, Z cannot be estimated directly

from the spherical geometry of the indenter and the indentation radius

(r i) because of the elastic deformation. However, Z for the impact case

in Figure 3 can be estimated from measured values of the coefficient of

restitution (e) using
(9 )

3Z 2 2Z 3

i- r + r I
Z*2 2 Z 3  (2)e= L ( ±2)

z
Zr

In this case e =0.79 ( 5 ) and Z = 40.75 pm. Then, noting that ri is approxi-

mately the same in both the static and impact cases, it can be assumed that

Z is approximately the same in both cases, and that yE - YH so that tan ' -an

be estimated from equation (1) for the static case yielding P = 83.80

where T in this case is an apparent indenter angle. Then, assuming that

* tan T is approximately the same in both the static and impact cases the

U
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dynamic hardness can be estimated from equation (1) for the impact case

yielding 3.1 GPa. This dynamic hardness implies an impact load of

1500 N which can be compared with the static load of 936 N at approxi-

mately the same indentation radius and an impact load of 1800 N estimated

(10)
previously using the Hertzian equations that assume elastic conditions.

Because the plastic deformation reduces the maximum load one would expect

the load in the elastic-plastic case to be less than that in the elastic

case as is indicated above.

One can speculate that the boundary formed by the wide circttmfer-

ential crack represents a boundary between a central region in which forcer,

tending to cause radial flow of the ZnS along the interfare between the
(11)

ZnS and glass are insufficient to overcome the frictional forces and

a circumferential band in which the frictional forces are overcome so i-,at

there is movement of ZnS radially along this interface.

The extent of damage under the surface was observed in detail by

viewing the damage through the polished sides ot the plates as shown in

Figure 4 in which the radial cracks are evident. The sketches in Figur( 5

present details of cracks observed in this manner. Out-of-plane radial

cracks were omitted for clarity. 'rhe pairs of static and impact specimens

have comparable indentation radii and are arranged in order of increasing

indentation radius. The cross-section in Figure 5A represents damage

at a small static indentation. The damage consists of radial (Palmquist)

cracks extending fror the edges of the indentation and a clear, ir-

reversibly deformed zone under the indentation. The radial cracks to not.

ILo
nn unul l ugm~a ,abmnmm m %h l n =b= a hnum , = ' b ml - ' u m ==laS
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I

Figure 4. Side view of damage under the surface at a static
indentation (load = 708 N, r. = 348 pm).1
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B 0.

Figure 5. Comparisons of cracks formed at static and impact sites
with comparable indentation radii (ZnS, 3 mm diameter
glass spheres).
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extend downward into the plate appreciably until they are beyond the

*i. irreversibly deformed zone. The radial cracks are not necessarily coplanar

and they do not bridge the gap under the indentation.

Evans and Wilshaw (2 ) observed that radial cracks form on loading in

ZnS. This observation is confirmed by observation of radial cracks that

*extend into the indentation (Figure 2A). If the radial cracks formed on

unloading, as a response to the residual stresses, the radial cracks would

originate at the boundary of the irreversibly deformed zone.

The Boussinesq and Michell stress distributions for a point load and

the Hertzian stress distribution for a blunt load at the surface show that,

* in the absence of plastic deformation, the out-of-piane hoop stresses are

compressive (12'1 3 ). However, Perrott (1 4 ) has shown that when the plastic

zone radius is 1.65 times the indentation radius the out-of-plane hoop

stresses at the boundary of an indentation become tensile at the surface.

Also, for an extreme case in which a rigid sphere lb pressed to the

depth of its radius into zinc sulfide, numerical analysis of the elastic

stress field by Evans and Wilshaw (2 ) has shown that the out-of-plane hoop

stresses are tensile. Therefore, the observation that radial cracks form

on loading in zinc sulfide can be attributed to the extensive plastic

deformation of this relatively soft material.

The impact site (Figure 5B) differs from the comparable static sFte

in several ways. The iihpact site has only one radial crack, which is

smaller than the largest radial crack at the static site. Also, lateral

cracking is present and the irreversibly deformed zone is smaller. rhese

e.S
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observations are consisteat with the earlier observation that the impact

indentations are shallower than static indentations at comparable inden-

tation radii. Therefore, one would expect lower tensile out-of-plane hoop

stress during loading and lower residual stresses during unloading which

would result in fewer and smaller radial. cracks. Also, because the dynamic

hardness is greater than the static hardness in ZnS, the presence of

q lateral cracking at the impact site is consistent with the observation of

Evans and Wilshaw (2 ) that lateral cracking is more extensive in harder

materials.

At the next larger indentations (Figures 5C,D), the radial cracks at

the static indentation are much larger than those in Figure 5A, and they

have extended so that they almost meet under the indentation. Otherwise,

the damage is similar to that in Figure 2A. The impact damage shows

larger radial and lateral cracks, as expected. In addition, under the

clear zone, there are cracks extending deeper into the ZnS perpendicular

to the surface that have been labelled as median cracks. These cracks are

not coplanar and the vertical line extending along the impact axis repre-

sents the intersection of the cracks. Median cracks are frequently observed

at static indentations under sharp indenters. As the load is removed,

radial cracks may extend in response to residual stresses and merge with

existing median cracks. Apparently, this has occurred in the present case.

At the largest indentations (Figure 5E,F), the radial cracks at the

static indentation are even larger and they have extended under the inden-

tation to completely close the gap to form an approximately semicircular

S

____________



crack. A large lateral crack was observed close to the surface. The im-

pact damage shows larger non-coplanar radial cracks and larger lateral.

cracks compared with those in Figure 5D. Again, median cracks have merged

with radial cracks. Lateral cracks are observed at several levels, all

farther from the surface than the lateral crack at the comparable static

site.

The numbers and lengths of radial cracks in static and impact loaded

specimens are compared in Figures 6 and 7. Radial cracks at static inden-

tations are observed at smaller indentation radii and larger numbers of

radial cracks are formed at a given indentation radius than at impact

indentations (Figure 6). Apparently, the more extensive irreversible

deformation at the static indentations changes the sign of the out-of-

plane hoop stresses from compressive to tensile at smaller indentation

radii than in the impact case leading to greater tensile hoop) deformation

and the greater number of cracks. Also, the extensive irreversible de-

formation may induce substantial residual stresses.

Radial cracks at static indentations are longer than those at impact

sites for indentation radii up to about 400 jrn (Figure 7'). At greater

radii the radial cracks at Impact sites are longer. Apparently, at small

indentation radii, the deeper indentations and greater irreversible de-

formation observed at the static sites changes the sign of the out-of-

plane hoop stresses at lower loads and results in greater residual stresses

leading to longer radial cracks than those at comparable impact in1denti3-

tions. However, at large indentation radii, the larger loads resulting

from increased dynamic hardness during impact become dominant and the

cracks become larger than those at comparable static indentations.
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IV. SUNMARY AND CONCLUSIONS

ZnS plates were statically indented under various loads and impacted

at various velocities using 3mm diameter glass spheres. The contact

damage was characterized and the damage at the static and impact sites

was compared yielding the results described in the previous section. The

results show that when compared at equal indentation radii, there are

substantial differences between static and impact damage.

q Damage at the static and Impact indentations included the irreversi-

bly deformed zone directly under the indentation and ring, radial, and

lateral cracks. The scale of the damage at the static indentations

4 increased with increasing loads on the glass spheres. An overall compari-

son of the static and impact damage at approximately equal indentation

radii shows that the scale of the overall impact damage is approximately

the same as that of thle static indentation damage. If one assumes that

the sizes of the cracks mainly depend oii tile maximuim loads ap~plied at

the contact, this observation appears to justify the assumption of equal

loads at equal indentation radii for static and impact indentations.

However, the calculations and microscopic observations show that, at

equal indentation radii the impact loads are substantially higher than

the static loads and there are substantial differences in the indentation

radius thresholds for crack formation and the numbers and sizes of thle

various types of cracks at static and impact indentations. These differ-

* ences are important in the performance of the material. For example, pre-

dictions based on the static damage may overestimate the extent of radial

cracking and strength degradation at low impact velocities. Also, they

* may underestimate the extent of lateral cracking and, therefore, under-

* estimate the degradation of optical transmission and erosion rate.
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ABSTRACT

(
HP ZnS was indented by spherical indenters of various radii. The

relationship of the load (P) and radial crack length (cr) was better

modeled by P d c r where d. is the indentation diameter thar hvmoee yP i cr 1

P c
r
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1. INTRODUCTION

(1,2) (2-6)
Elastic and elastic-plastic analyses have been used to

relate the extent of crack propagation to the applied load at contacts

with various types of indenters. The resulting relations can be used

to estimate the extent of crack propagation, strength degradation and

erosion resulting from damage induced during static indentation~ 1 '~

localized impact (,)and grinding 5'' 0 2 . The available relations

differ mainly in the extent to which they take account of the character-

istics of the particular contact, including the effect of residual.

stresses. In the region far removed from the contact (the far field),

the effects of the particular contact characteristics are negligible

3,
and relations of the form load P -c where c is the crack dimension

can be used. However, in a wide range of cases, the effects of tbe

* contact characteristics are important and must be accounted for. Pihe

contact characteristics may be important when the contact area is

large, when there is extensive irreversible deformation at the contact,

in the presence of residual stresses, and in cases of line contact

loading or wedging. In this investigation, the indenter radii and

applied loads were varied and the resulting observations were used

to evaluate the effect of contact characteristics associated with

indenter radius on the extent of crack propagation in zinc sulfide.

......................................................... .....
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The original elastic relation for the far field was derived by

Roesler (1'2 ) for the case relating a load on a flat punch to the

radius (R) of the base of a cone crack propagat,.d from the contact leading to

KP ...C I (11)

(15((,))

where K is the ritical !Ltross intensit,, factor ad B Is a (,;i

IC

less constant uniquely determined b" tihe 'oisson'.' ; ratio (-.) sn that,
/ ..,c.d~nee s f v ie

for a particular material, 1' - R '.on, crack (ljkreters five time

greater than the punch diameters were necessary to assure far field

conditions.
3 /

Analogous P - c " relations are frequently app]ied in the case

in which the contact is elastic-plast ic, for example in cnnta t-" involving

sharp indenter.,; Other types of cracks including median,

radial and lateral cracks are formed reflecting Ihe different tress;
(2)

distributions in this case. Lawn and Fuller hauwe shown h at wed:ing

forces and friction can modify the crack lengths, with the wedging fnrces

depending on the indenter angle. Also, residual stresses at contacts

can cause crack growth, especially near the surface where the sign of

the out-of-plane hoop stre.sses may he reversed fr,nn compressive tco

tensile on unloading(
1 3 )

In the case of line contact loading, P - Ic" .here L is the length

of contact. It is clear that in other cases in which applied loads or

residual stresses act over an extended region, a sinilar relati'n minii-t

control crack propagation near the contact.

In cases in which there is irrecrsihle deformation it thi,. ronctrt,

one can proceed as did Lawn and Swaln 3 ) and Conwa,, and Kirchnr ,'i
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the basis that when shear failure occurs under the contact, the out-of-

q plane hoop tensile stresses are relaxed to zero in the plastic zone. In

this case the function representing the radial dependence of the prior

out-of plane hoop stress is substituted into a standard fracture mechanics

equation and integrated over the region from the irreversibly deformed

zone (Zo) to the tip of a median crack of depth (cm) leading to

2 TI KIC Z c

po m (2)
(I - 2v)

assuming c >> Z . For v = 0.25m o

P 49.5 K Z c 2  (3)
0 n

Furthermore, based on the theory o' hardness te;ting Z 0 P so that,

for a particular material, one might expect to observe P -- c 'rhere-

fore, theoretically at least, the contact characteristics have a definite

effect on the load dependence of the crack length in this case leading

to P - c rather than P- c

If one assumes that the irreversibly deformed zones are geometrically

self-similar for various loads, which is reasonable in many cases, other

contact dimensions such as the indentation radius (ri) or diameter (d.)

can be substituted for Z in equation (3). For spherical indenters, the

assumption of self-similarity is a reasonable approximation at high loads

* where there is substantial penetration of the surface. It should be

noted that a wide range of mechanisms including line contact loading,

wedging and residuti stresses can also lead to P - di c relations,

* especially in the near field. Therefore, experimental agreement with

P a di c does not necessarily identify the mechanism controlling crack

propagation.

L
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II. PROCEDURESI

The HP ZnS was purchased as a cylindrical plate 3 in. diameter x

6 mm thick. This plate was indented on the large surfaces which are per-

pendicular to the hot pressing direction, by static loading using spherical

indenters. The indenters included relatively large compliant indenters

of glass (3 mm diameter) and smaller, more rigid indenters of tungsten

carbide with diameters ranging from 0.36 to 1.59 mm. The loads which

ranged from 9-890N were applied and measured using a standard testing

machine and a crosshead speed of 2 pm-s-1 . The HP ZnS plate was placed

on the load cell and the spheres were fastened to the crosshead.

The damage was characterized by optical and scanning electron micro-

scopy. The indentation radius and the length of the longest radial crack

at each indentation were measured along the specimen surface using the grid

in the eyepiece of the optical microscope. Polarized light was used to

improve the visibility of the tips of the cracks during the crack length

measurements. Lateral cracking and chipping around the indentations were

also characterized.

The results were plotted as suggested by the relations P - cr/2 andr

P - di cr where cr is the radial crack length. Coefficients of deter-

mination were calculated and used to evaluate these relations. The

results are discussed in terms of the similarities and differences in the
S

stress distributions beneath blunt and sharp indenters.

* IRTRAN 2, Eastman KodakCo., Rochester, N.Y. 14650

+ Glass spheres, No. 3000, Walter Stern, Inc. Port Washington, N.Y.
t Tungsten carbide spheres, Ultraspherics, Inc., Saulte Ste. Marie, MI. 49783

Instron Corp., Canton, Mass. 02021
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III. RESULTS AND DISCUSSION

Relationship of load and radial crack length

In the range of loads used in this investigation, the spherical in-

denters induce permanent indentations in the HP ZnS. Radial cracks,

lateral cracks and chipping were observed at the indentations. The

lengths of the radial cracks and lateral cracks increased with increasing

load. Evidence presented previously includes descriptions of these

features including the radial cracks (1 4'15 )  Among other characteristics,

these cracks originate at the edge of the indentation where they form

as shallow (Palwquist) cracks; that is, as radial cracks that do not

penetrate very far below the surface. As the indentation spreads, it

covers the original segments of these cracks. The fact that these cracks

are observed within the indentation which is in compression indicates

that these cracks grew during loading when each segment was not yet under

the indenter. At higher loads the cracks extended to greater depths so

that they approximated -quarter penny-shaped cracks surrounding the

irreversibly deformed zone. Unlike cracks formed under Vickers indenters

where the edges control crack locations, each individual crack does not

usually extend on both sides of the indentation.

(14915)
As shown previously the number of cracks formed increases

strongly with increasing load, approaching 20 at high loads. A wide

* range of crack lengths is observed at each indentation.

Figure 1 shows that, for the six glass and tungsten carbide indenters,

the average indentation pressure remains approximately constant with in-

* creasing load indicating the relative absence of work hardening in the

HP ZnS. This result is consistant with recent observations o LChiang,

Marshall and Evans (16) for ZnS of unspecified type and conflicts with
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Figure 1. Tndentation radius vs. P1 for spherical indenters of various
radii (HP ZnS).
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(4)
earlier observations of Evans and Wilshaw for CVD ZnS. Work hardening

would be indicated by higher loads than predicted by the linear

relation, at the larger indentations. The present average indentation

-2
pressure is approximately 1.9 GNm which is consistant with the results

of Chiang, Marshall and Evans ( 16 ) for fully developed indentations.

The data are plotted in terms of the relations P - c3 /2 and
r

P d~ icr where c is the length of the longest radial crack in Figures

2 and 3, for the two largest indenters which were 3 mm diameter glass

spheres and 1.59 mm diameter tungsten carbide spheres. The P , crr

results using the 3 mm diameter glass spheres (open circles in Figure 2)

yield a curved plot rather than a straight line showing that the response

of the material is non-linear in terms of the P - c 3 / 2 relation. Thisr

result indicates that another factor must be taken into account.

The P -d c 2 results are represented by x in Figure 2 yield-

ing a straight line. This result suggests that this relation is a good

model for the variation of load with radial crack length under these

conditions.

The solid line through the data points represents crack lengths cal-

culated using equation (3). To do this calculation it was first necessary

to calculate Z . This was done by the method indicated by Conway and

Kirchner (6) for glass using

Z = 3 (4)

where is a proportionality factor that varies from one material to

another. Zo = 8a where a is the indentation radius and is a dimension-

less geometrical factor determined by the plastic zone. For circular

indentations and constant contact pressure, substituting for (a) yields

6J
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" P (5)

(2irH) 2

where H is the hardness. Assuming approximate self-similarity and 6

coonstant Co:" various materials indented by spherical indenters, t for

ZnS was estimated by multiplying the earlier value determined for glass
-6- (6)

which was 15 x 10- 6 N Im, by the square root of the ratio of the hard-

ness of glass (5.6 GPa) to the hardness of ZnS (1.9 GPa) yielding

25.8 x 10-6 N 2 m. The Z values were then calculated and substituted
0

in equation (3) together with KIC 0.44 MPa m to calculate the

curve represented by the solid line. The agreement between the data

points and the calculated curve is remarkable considering the crudeness

of the assumptions.

A second theoretical curve indicated by the dashed line was calcu-

lated using the method of Lawn and Fuller (2 ) based on the assumption that

wedging controlled the extent of crack growth. Because the wedging

angle Y of a sphere is not a fixed value, it was assumed in each case

that the wedging angle was the angle between the tangent to the sphere at

the edge of the contact and the perpendicular to the surface for each

* indentation. This assumption tends to maximize the calculated crack

length. The crack lengths are plotted on the c r scale and by comparisonr

with the experimental data (open circles) show that the calculated crack

* lengths are much smaller than the experimental values. This result indicates

that the experimental crack depths are not controlled by wedging in this

case.

*1

F. -~
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Similar results are given in Figure 3 for the 1.59 mm diameter

tungsten carbide indenter. Again, the experimental data plotted on the
3/2

C r/ scale are nonlinear. The experimental data plotted on the d i Cr1

scale are essentially a straight line indicating good agreement with

d C r 2.The calculated crack lengths based on equation (3) yielded a

straight line with the calculated crack lengths slightly smaller than

the experimental values, and the wedging predictions yielded smaller

crack lengths than the experimental values, a-, before.

Comparing the P -c r32curves in Figures 2 and 3 reveals that in

each case there is a non-linear region near the origin but that, as the

4 sphere radius decreases, the region of greatest non -linearity moved

closer to the origin. This trend continued at still smaller sphere

radii so that at very small sphere radii these curves form reasonably

straight lines, despite the fact that they tend to intersect rhe load

axis at positive loads. Therefore, as the spheres tend toward sharp

*indenters, the P X C'32 relation becomes a somewhat better model than
r

it is in the case of indenters with larger radii.

Based on the above comparisons, the experimental results obtained

using indenters with six different diameters are given in terms of

4 ~P -d. c ;1in Figure 4. The results show approximately linear variation
1 r

of d.i c r with increasing load and slightly decreasing slopes (increasing

radial crack length) with decreasing sphere diameter. Apparently, as the

* sphere diameter decreases there is an increasing contribution t; -rack

growth due to another mechanism such as wedging or residual stresses.

In some cases in which there were data points indicating less crack

6 growth than expected based on the general trend of the data for a
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Figure 4. Load vs. d jCr ! for spherical indenters of various diameters.
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particular sphere radius, extensive chipping was observed at the

indentations. In these cases, the residual stresses may have been

relieved to some degree by chipping so that they contributed less to

crack growth. In relation to the possibility of an added wedging

contribution to crack growth, it should be pointed out that the ratio

of the maximum contact radius to the sphere radius increased from

0.26 for the 3mm spheres to 0.77 for the .36mm spheres so that, in

general, the contact angle varies with sphere radius in the direction

expected to result in an increased wedging effect.

Statistical coparison of the P - c 2 and P - d. c relations-r i-r-- -

The suitability of the above relations was evaluated by comparing

the coefficients of determination. When these measures were originally

calculated, the scatter introduced by errors in the measurement of di was

ii
observed to effect the results. The d. values are subject to error because

the indentations are small and not well defined, in part hecause of

chipping. Therefore, the coefficients of determination were recalculated

using smoothed di values from Figure 1. These results are given in 7

Table I. The coefficients of determination show that the data plotted

according to the P a d c relation are essentially linear and there|i r

is little scatter about the fitted line. The calculated intercepts

of the six lines on the load axis are small, ranging from +34 to -5.4 N.

The coefficients of determination for P c Cr / show poorer correlations.

Also, the calculated intercepts are larger, consistantlv positive and

more scattered ranging from 10.4 to 178.6 N. These larger intercepts

are not unexpected based on the strong (almost parabolic) curvature

evident in Figures 2 and 3. Considering all of this evidence, it is

clear that the data fits the P di Cr relation better than the

P c cr3 /2 relation.
r
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TABLE I

Coefficients of determination of data

in terms of the P c and P w di c models

Indenter Coefficient of DeterminationInene moe oe
Description P dic model p c 2 model

3 mm glass 0.995 0.941

1.59 mm tungsten carbide 0.997 0.975

1.19 mm " " 0.998 0.960

0.81 mm " " 0.909 0.851

0.52 mm 0.972 0.832

0.36 mm 0.997 0.990

II

iS
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Effect of the stress distribution on crack propagation

The fact that radial cracks have been observed to form on loading

(4)in zinc sulfide means that, at the surface, the out-of-plane hoop

stresses in the elastic stress field are tensile under these elastic-

plastic conditions rather than compressive as Indicated by the theoretical

elastic stress distribution for blunt indenters (Figure 5). Evans and

Wilshaw (4 ) have shown numerically that, for the case of a sphere pressed

into the surface under elastic-plastic conditions, to the point that

the indentation radius equalled the sphere radius, the out-of-plane

hoop stresses are tensile. Given the fact that these stresses are the

result of a central load accompanied by an elastic-plastic disturbance,

it is reasonable to assume that this stress field varies inversely as

the square of the radius from the center of the contact as in the case

of the out-of-plane hoop stresses directly under the indenter

Furthermore, because the magnitudes of these stresses are fixed by the

yield stress at the elastic-plastic boundary and the elastic stress

(4)
fields scale with the radius of the yield zone , it is reasonable to

assume that the stress distributions along the surface and under the

contact are approximately equal in magnitude and vary similarly except

to the extent that the stresses along the surface are affected by free

surface effects and friction. Therefore, it is reasonable to apply

equation (3) to the present radial cracks in addition to the median

cracks for which it was derived.

As shown in Figure 5, near the surface under a blunt indenter

subject only to elastic deformation, the stress is compressive as one

would expect because ring cracks usually form instead of radial

cracks. The sign of the stress changes to tensile between one



62

normalized out-of-plane stress
~-0

compressive tensile
Blunt indenter--w

(Hertzki)O 2__F
Sharp indenter

4-- (Boussinesq)

6--

8-

zS

Figure 5. Comparison of normalized out-of-plane stress dis-
tributions for blunt and sharp indenters.
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and two contact radii below the surface. At greater depths the stress

passes through a peak and then decreases slightly more than linearly until

it merges with the inverse square distribution in the far field. On the

other hand the stress distribution under the sharp indenter decreases in-

versely with the square of the normalized depth. At first glance it

might seem that because of the large difference in these stress distribu-

tions the shift from one of these distributions toward the other might lead

to large differences in crack propagation. However, in ZnS there is

substantial irreversible deformation under all of the spherical indenters.

Z ranges approximately from one to two contact radii in depth. If we

assume as we did previously that the out-of-plane hoop stresses are

relaxed by the irreversible deformation, it is (lear that the stress

intensity factors will not be very different because the stress dis-

tributions are much less dissimilar at greater depths.

The nature of the near field-far field prohlem ci,,, he - -E ubt- mir-

stood with the aid of Figures 5 and 6. Figure 6 is a plot of the load

versus the normalized crack length (c r/r i). The data are plotted in this

way because the boundary between the near field and the far field is

usually expressed in terms of c r /r It has been common in the case of

sharp indenters to consider that the transition from the near field to

far field behavior occurs at c r/r i  3(7) In Figure 6 this transition

should be evidenced by a smaller load dependence of the crack length in

the far field.

Beginning with Figure 5, one can see that at z/ri > 6 the stress

distributions due to the two types of indenters become identical. However,

it would be a mistake to conclude that the resulting crack lengths become

the same at this point because the stress intensity factor at the crack

I-
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Figure 6. Load vs. c r/r for spherical indonters ot various dinmet s.n.
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tip depends on these stresses integrated from Z 0to c. Therefore, the

effect of differences in contact characteristics can extend even farther

into the specimen. Turning to Figure 6, it is clear that there is no

change in slope or discontinuity in the data obtained using the 3 mm glass

spheres. The data from the smaller tungsten carbide indenters are some-

what scattered so that the results are less clear but there appears to

be a gradual change in slope at c /r. 6 which may indicate a transition
1

from near field to far field behavior. This result is consistent with

Roesler's observations for cone cracks and with expectations based on

the stress distribution in Figure 5.
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IV. CONCLUSIONS

1. For HP ZnS indented by spheres of various radii, the radial crack

length data plotted based on P - di Cr 
'
2 yielded essentially linear

plots. Theoretical curves based on equation (3) yielded good estimates

of the radial crack lengths.

2. Data obtained using the larger indenters and plotted based on P - c 3/ 2

r

yielded plots with substantial nonlinearity showing that this is not a

good model of the response of the material in these cases.

* 3. Small decreases in the slopes of the P vs. dicr curves with

decreasing indenter radius may occur as a result of increasing contri-

butions of wedging or residual stresses.

4. The experimental evidence suggests that for the largest diameter spheres

the observed cracks propagated in the near field. For smaller diameter

spheres both near field and far field propagation may be represented.

However, the P d C relation fits the data very well in both cases.

0
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ti ABSTRACT

The extent of elastic recovery at spherical indentations in MgF2

indented by static and impact loads was analysed. The fraction of the

indentation depth that was recovered decreased with increasing static

load. Similar results were observed for impact loads. The kinetic

energy losses increased with a velocity exponent of 2.61, close to the

value 2.6 predicted by Hunter for elastic impacts, despite substantial

variations in the contributions of various loss mechanisms over the

range of velocities for which measurements were made. Apparently the

losses are partitioned among the various loss mechanisms that derive

their energy from the elastic field.

67
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I. INTRODUCTIONj

Elastic recovery at elastic-plastic contacts is responsible for

residual stresses at indentations and controls the rebounding velocities

(1-4)of impacting particles .The residual stresses are an Important

factor in the propagation of radial and lateral cracks and in determin-

ing the strength and erosion rate. The rebounding velocities are sensi-

tive indicators of energy absorption during impact. For these reasons,

understanding of elastic recovery is essential to understanding of

mechanisms causing damage at contacts.

Lawn and Howes ()recently extended an earlier analysis of elastic

recovery at conical indentations by Stillwell and Tabor 5 , introducing

the hardness/elastic modulus (H/E) parameter for convenience in materials

evaluation and incorporating a residual load term to account for the

residual stresses necessarily induced as a result of tile post indentation

configuration that departs significantly from the initial flat surface.

However, in many important cases, contact damage is induced by blunt

rather than sharp indenters. Therefore, in the present investigation

the Lawn and Howes approach has been used in an attempt to analyse

elastic recovery at spherical indentations. This problem is complicated

by the fact that, for spheres, the contact angle varies over the surface

of the contact rather than remaining constant as in the case of cones or

pyramids. This necessitates the use of assumptions the significance of

which must be evaluated by comparing predictions with experimental results.

The present problem is further complicated by the fact that, for spherical

indenters, the initial response of the indented material is elastic in

the low load range instead of elastic-plastic as in the case of sharp
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indenters. Therefore, a model that accounts for only the elastic-

plastic response can be expected to yield good approximations only at

higher loads where the initial elastic response is only a small frac-

tion of the total. However, at these higher loads, radial and lateral

crack formation, crushing, chipping or pore formation under the inden-

tation may disrupt the simple indentation geometry observod at low

loads.

IDespite the fact that Lawn and Howes restricted their experiments

to loads less than the threshold for crack formation, it is clearly of

interest to determine the applicability of their approach to greater

0loads such as those important In investigations of localized impactf

damage and erosion. This is one objective of the present investigation.

11. ANALYSIS

When a rigid spherical. indenter is pressed into a flat surface of

an elastic-plastic material, the initial deformation is elastic but at

some load plastic deformation initiates within the plate, spreads with

increasing load until it reaches the sphere-plate interface and then

(6)
along that interface until it reaches the edge of the contact or beyond

The loading tends to depress the edge of the contact below the original

surface of the plate but, depending oin frictirn and other factors,

plastic flow toward the surface may form a ring-like hump surrounding

the contact. Although the profile of this hump can be measured after

unloading, little is known about the time dependence ot this process

during static and impact loading. Therefore, it is assumed in the present

case that these effects offset each other so that, as ;hoxrn in Figure la,
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ri

a. Sphere indenting flat surface

I

Zr'

b. Surface after unloading showing elevation a
caused mainly by lateral cracking

Figure I Indentations during loading and after unloading.
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the depth of the indentation Z can be measured from the original

*1 flat durface.

Loading

Assuming as Lawn and Howes did that the loading half cycle is

mainly an elastic-plastic process, the load P is

P = po.r.2  (1)

where p is the average pressure on the projected area of the indenta-

tion and r. is the radius of the indentation. However, r2 = 2RZ - 2

2RZ for shallow indentations where R is the sphere radius so that

4 P = 27rHR Z (2)

where the hardness (H) is taken equal to po.

Unloading

During unloading the material in the plate pushes against the

indenter so that elastic energy is recovered from the plate. lHowever,

as unloading progresses, residual stresses are induced in the region

near the indenter as the elastically deformed material relaxes against

the irreversibly deformed material under the indentation. Therefore,

only part of the stored elastic energy is recoverable during unloading.
6

During subsequent loading cycles, the load path is retraced with only

small deviations as long as the maximum load P* is not exceeded(4) . In

the absence of cracking and other complications, unloading can be con-
6

sidered to be mainly an elastic process.

As indicated by Johnson (7 ), the stresses in the surface of an

elastic, semi-infinite solid indented by a rigid sphere are (for small
sstrains) -
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4 E(r /R)
Po = 3 (- 2 ) (3)

0 3 7 (l-V 2 )

where v is poisson's ratio. Therefore the load is

8 E R1/ 2 Z 3 / 2

P= ER-- (4)

3 (l-v2 )

in the absence of residual stresses. However, at each point during

recovery

P = PE - Pr (5)

where PE and P are the elastic and residual loads respectively.E r

Therefore,

P V7 E R1 / 2  3/2_ Z 3/2
P =- (Z -r (6)

3 (l-v2 ) r

At the end of the loading cycle and the beginning of the unloading cycle

the indenter loads (P*) and depths (Z*) are necessarily equal so that

equating (2) and (6),

7*3 /2 _ 3/ 2  6 *(-V) R1/2 H

z8* E
and assuming v = 0.3

Z*3/2 -  3/2,
__ = 1.52 Rl/2 H (8)

Z* E
E,/2Z3/2

so that as one might expect when H is large relative 
to E, r

is large and Z is small (shallow iudentation). If Z*
r

Z* and Z can be measured or estimated it should be possible to estimate
r

the dynamic hardness during impact using equations (7) or (8).

Kinetic energy

In the impact case, the kinetic energy is reduced to zero during

the loading half cycle so that the work done on the plate (W.) is
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, Z*

W. = f P(Z) dZ (9)
0

W. = rHRZ* (10)

Therefore, comparing the kinetic energy of the sphere with the work

done during impact is another means to evaluate this approach.

11. EXPERIMENTAL RESULTS AND DISCUSSION

An MgF2 plateA was subjected to static and impact loading using

1.59mmdiameter tungsten carbide spheres as described in ,nore detail

elsewhere (89). The contact damage was characterized by optical micro-

scopy and profilometry. Good indentations were observed at all static

loads in the load range investigated. Except at the lowest loads,

radial and lateral cracks were observed. In the impact specimens, the

lateral crack lengths were greater than the radial crack lengths. In

many cases these cracks extended to the surface causing extensive

chipping. Because these chips include a segment of the surface of the

indentation, extensive chipping interfered greatly with determination

of the indentation dimensions.

Static loading

Based on measurements of the indentation radii after unloading,

the average pressure on the projected area of the indentation is

approximately constant for the range of loads used as shown in Figure

2 and Table I. The average of these average pressures was 7.86 GPa.

This value is slightly higher than available hardness valne:;, for

example 7.3 GPa (4 ), for this material. These constant pressures support

A IRTAN 1, Eastman Kodak Co., Rochester, N. Y.
t Ultraspherics, Inc., Saulte Ste. Marie, Michigan.

I
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* Static loads
1000 0 Dynamic loads of impact specimens

800-

z 1600-
'0o a

400-

200z 70 .86 GPa200O

00 2 4 6 8 10 12
Indentation Area-m . I01

Figure 2 Load vs Indentation Area for static and impact loading
of 1.59 mm diam. tungsten carbide spheres on MgF 2 .
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the assumption of constant pressure as a function of Z in equation (2),

( at least for this particular range of loads.

The indentation depth at each maximum load (Z*) was calculated

from the recovered indentation radii assuming that the indenter remained

spherical and using E = 115 GPA.

The recovered indentation depths (Z ) were measured by profilometry.
r

These results are also presented in Table I and show that the recovered

depth ranges from about 1/3 to 2/3 of the depth at maximum load and that

the fractional extent of recovery decreases with increasing load. This

variation is different from the constant Z rIZ* predicted by Lawn and

Howes for pyramidal indentations in particular materials and it appears

to arise from the lack of a constant indenter angle in the case of

spherical indentations.

The theoretical predictions and experimental data for the fraction

of Z* recovered are compared in Figure 3 and show reasonable agreement.

At low values of contact radius the hardness is not exceeded at any point

under the contact so an indentation is not observed. However, as the

load and contact radius increase, the maximum pressure will, at some point,

exceed the hardness under the center of the indentation. If one assumes

that a permanent indentation can be formed at this load it is clear that

the radius of such an indentation would be small relative to the total

contact so that the assumptions relating the load and the average pressure

in equation (1) and substitution of the hardness for the average pressure

in equation (2) are not justified at low loads. The arrows in Figure 3

indicate the Z* values at which the maximum pressure at the center of

the contact and the mean pressure reach 7.86 GPa. Because permanent
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max. pressure mean pressure
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irregularly shaped
S .4indentation

0 experimental data, static loading
0 experimental data, impact loading.2

theoretical predictions (equa. 8)

*05 10 15 20 25_
Depth at Max. Load (Z*)- m

* Figure 3 Fraction recovered vs depth at maximum load for static
indentations in MgF2  (WC sphere 1.59 mn diam.)
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indentations may be induced for Z*> 4pim, it is clear that equation (8)

overe~stimates the fraction recovered in the range 4 <Z* < 8.6 Pam. How-

ever, the experimental data may extrapolate to total recovery at

Z* 4 pim, where plastic deformation is first expected to occur.

Impact loading

Except at low impact velocities, extensive chipping removed much of

the indentation surfaces so that the specimens were not suitable for

measuring the recovered indentation depth. Therefore available data are

limited to three data points mainly at low velocities. By substituting

Z* and Z rin equation (8), the dynamic hardness was estimated. The

results are given in Table 1 and plotted in Figure 2. The fraction

recovered was also calculated and plotted in Figure 3. Because the

elastic recovery is somewhat less than expected for a material of this

hardness and Young's modulus, the dynamic hardness values and the frac-

tion recovered are lower than might have been expected.

The kinetic energies of the impacts can be estimated from the mass

and velocity of the impacting sphere as well as from the depth Z* of

the indentation. Results from both methods are compared in Figure 4.

At low impact velocities the kinetic energies, calculated using equation

(8), are close to the values calculated from the mass and impact

velocity. In this velocity range good indentations with little chipping

are formed. Therefore, the measurements of the indentation radii and

the estimates of Z* should be reliable. Furthermore, the elastic-

plastic mechanism of indentation formation and energy absorption is

consistent with the assumptions of the analysis. Therefore, the model

can be used to estimate the impact energy at low velocities. At
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Figure 4 Kinetic energy vs impact velocitv for impact,; ,f 1.59 mm
diameter tungsten carbide spheres on MgF9 .
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higher velocities considerable chipping, lateral cracking and crushing

are observed. The chipping introduces uncertainty into the measurement

of the indentation radii which in turn affects the estimates of Z*. it

appears that in some cases in which the sides of the indentation have

been chipped away, r~ has been underestimated leading to underestimates

2
of Z*. Because the kinetic energies depend on Z* , the resulting errors

can be large.

In principle it should be possible to derive equations for the

rebounding kinetic energy and the coefficient of restitution using the

Lawn and Howes approach. However, in view of the scatter in the impact

kinetic energy data, this approach seems unpromising in this case. How-

ever, the measured impact and rebounding velocities were used to calcu-

late the coefficients of restitution as shown in Figure 5. The coeffi-

cient of restitution (e) decreases gradually with increasing impactb

velocity in contrast to the Lawn and Howes prediction of a constant

value for impacts of pyramidal indenters. This difference can be

explained, at least in part, by the fact that at low impact velocities

spheres are expected to have high coefficients of restitution because

there is little or no plastic deformation. At higher impact velocities

the fraction of the kinetic energy loss due to plastic deformation

increases, thus decreasing the coefficient of restitution. It is

expected that this tendency will be moderated to some extent by the

increase in dynamic hardness with impact velocity.

The log kinetic energy loss varies linearly with log impact velocity

as shown in Figure 6. The slope is 2.61, a value very similar to the

value 2.6 predicted by Hunter (11 ) for elastic impacts of spheres on flat

plates. Except perhaps at 6.25 m-s _1impact velocity, cracks were
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observed at all of the impact sites. The threshold velocities for

chipping (10 m.s - ) and crushing (23 ms ) are marked on the curve.

One might have expected that additional loss mechanisms such as chipping

and crushing would cause increasing kinetic energy loss over that

expected but this was not observed. Apparently, because these mechanisms

depend on the elastic stress field, the energy losses are partitioned

among the available mechanisms. Earlier observations (12 ) involving

crushing in a viscoelastic material gave a different result in which the

slope increased at the crushing threshold, probably because of friction

losses that do not depend on the elastic field.

fhe results in Figure 6 are also significant in terms of elastic

recovery. One might have thought, for example, that relief of the

residual stresses induced during elastic recovery by chippin, might

increase the extent of elastic recovery, thus increasing the coefficient

of restitution ind decreasing kinetic energy loss in thosL! specirens.

Instead, the results seem to indicate that the details of the recovery

process are not important.

IV. CONCLUSIONS

The existence of other damage mechanisms in addition to plastic

deformation at the indentation is not in itsclf a decisive reason for

not applying the Lawn and Howes (4 ) approach to analysis of the recovery

at indentations formed by static or impact loadin z by spheres. In fact,

* an analysis for spheres based on their approach yiclded predictions that

were confirmed in several respects by static and impact loading experi-

ments on MgF 2 . The principal difficulties were practical problems like

*2

* I
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measuring the indentation radius when part or all of the sides of the

indentation have been removed by chipping and measuring the depth of

the indentation in the presence of a raised specimen surface caused by

lateral cracking.

In MgF2, the contact pressure was approximately constant over the

range of loads used in the static loading experiments. The fraction of

the indentation depth that is recovered decreased with increasing static

load as predicted by the theory. This result differs from the constant

value obtained previously by Lawn and Howes for static pyramidal indenta-

tions in a wide variety of materials.

In impact experiments, elastic recovery is similar to that in static

loading experiments. The coefficient of restitution decreases with

increasing impact velocity reflecting at least in part the decrease in

the fraction of the indentation depth that is recovered, with increasing

impact velocity. The slope of the log kinetic energy loss vs. log impact

velocity curve was 2.61 in excellent agreement with Hunter's predic-

tion for elastic impacts where the losses are mainly due to stress waves.

The presence of different loss mechanisms such as plastic deformation,

chipping and crushing did not vary the slope of this curve. Apparently,

the energy losses for the mechanisms deriving their energy from the

elastic field are subject to a partitioning process so that if one

mechanism requires more energy, other mechanisms must be limited.
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ABSTRACT

Stress wave energy is the principal energy loss mechanism in

elastic impacts on firmly supported targets and is a significant loss

mechanism in other cases. In this paper, Hunter's analysis is extended

to the case in which the mechanical impedance of the impacting particle

is finite. Expressions are derived for the total stress wave energy and

the stress wave energies in the target and the impacting particle. These

expressions are used to explore the effect of the impedance on the

efficiency of an impact and the stress wave energy. The theoretical

results are compared with measurements of the coefficient of restitution

for impacts on a glass.
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I. INTRODUCTION

Some theories of impact assume that the stress wave energy is

negligible (1*This assumption enable!s one to directly derive the velocity

dependence of important characteristics such as load, contact time and

depth of damage. However, if one analyzes the energy losses during impact

on firmly supported targets, the stress wave energy is an essential factor,

especially in an elastic situation where it represents the only signifi-

cant loss.

The present analysis is concerned with extension of Hunter's(2

analysis of the stress wave energy in a semi-infinite solid to the case

of a real impact in which the mechanical impedance of the impacting

particle is not assumed to be infinite. This analysis is followed by an

inquiry into the role of the impedance of the target and the particle on

the efficiency of an impact and its relation to the energy of the stress

waves. The theoretical results were compared, to the extent possible,

using experimental data for the coefficient of restitution for impacts

(3)at various velocities on glass at various temperatures .S
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II. EXTENSION OF HUNTER'S ANALYSIS

(2)
Hunter derived an expression for the stress wave energy stored in

a target after impact by a spherical projectile. The derivation assumed

* the radiation impedance of the projectile to be infinite in the same way

(4,5)as Miller and Pursey assumed a perfect oscillator in their analysis

of the field and radiation impedance of mechanical radiators.

However, in real impact situations, the radiation impedance of an

impacting particle (i.e. the radiator) is finite. If a stress is applied

4 to the particle, a displacement will appear within it, and stress waves

will propagate. Thus, part of the stress wave energy, produced by

* impact, is induced in the particle.

To derive an expression for the stress wave energy induced in the

particle, one can follow a derivation similar to that of Miller and

*Pursey(4 for a semi-infinite solid. This approach is reasonable. Indeed,

Love ()has shown the similarities in the elastic behavior of a half

plane and a disk. Ther-fore, one can expect such similarities to come

into play when comparing a sphere and a semi-infinite solid.

(4)
Miller and Pursey's derivation describes the case where a circular

disk of finite radius vibrates normally to the free surface of a semi-

infinite solid. For these conditions, they derive the expression for the

* displacement of the free surface of the solid. Then they determine the

energy carried by the stress waves thus produced and compute the partitioning

* The radiation impedance is defined as the ratio of the stress to the
*mean displacement velocity under the radiator in the direction of the

applied stress(4).
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of this energy among the various types of waves (compressional, shear and

(5)surface waves) .Hunter generalized the results of Miller and Pursey

to cover the problem of transient pulses. Using the expression for the

normal displacement of the free surface of a semi-infinite body subjected

iWtto a uniform periodic surface pressure pe acting over a surface of

radius (a), the mean surface displacement (u) over the circle of contact

(contact area of impact) was obtained, by Fourier synthesis, for a pressure

pulse of arbitrary profile p(t) () This result was a key to determining

the stress wave energy produced in the target durin~g impact which is

given by -1/5 3/5 -6/5

p P p _ 3/5 NmV2wt 3 V0  ( , 0) 1
Pt c 0 t

For a spherical particle, the derivation will follow the same pattern

described in the above paragraph.

As Miller and Pursey (4 ) did, one can write the expression relating

the components of the displacement (u i) to the dilatation (div i~=A) and
W

the distortion (rot 0 W), as well as the partial differential equations

characteristic of the dilatation and the distortion. The expressions for

the stress across the free surface as functions of the displacement completeS

the set of equations necessary to solve the problem. 0Hankel's transform(7,8 )

was used to change the partial differential equations to differential

equations. En the case of a semi-infinite solid, this transformation is

See Appendix A for definitions of symbols.

0,These relationships are written in a cylindrical system of coordinates 0
with the origin at the center of the contact area and the z axis extending

*from this origin along the diameter of the particle (Fig. 1) as in the
* case (z of Reference 4.
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Figure 1. System of coordinates used in the derivation (center Is
at the center of the contact area. System (fi,r) parallel
to the target and axis Z coinciding with the diameter of

4 the particle and with origin 0).
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relatively simple but complications occur in the spherical case because

application of Hankel's transform to a derivative involves introduction

of boundary conditions. These boundary conditions are such that the surface

of the sphere is free of stress outside the contact area. Under these

conditions, remembering cylindrical symmetry, use of Hankel's transform

implies introduction of bulk dilatation and bulk distortion of the sphere

and their derivatives. In effect, in the treatment of the stress waves

in a sphere, the partial differential equations are transformed into non-

homogenous differential equations (see Appendix B). These equations

could probably be solved but since the analysis of the bulk deformation

of a particle is beyond the scope of this particular investigation, this

problem was avoided by assuming a rigid sphere (based on the distinction

that stress waves are properties of the medium and bulk deformation is a

property of the body ).This assumption enables one to equate to zero

the second member of the differential equations characteristic of the

stress waves in the sphere and, in consequence, to use the results for

a semi-infinite solid to describe these stress waves in a sphere. In

order to determine the stress wave energy in the particle, we can relate

it to the amount of stress wave energy in the target through the notion

of intensity. The intensity of an elastic wave is defined as the mean

power transmitted per unit of surface 9 . For the target, this intensity

Stich an assumption is comparable to the assumption of a non- 0

bending plate.
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will be equal to the stress wave energy divided by the time of contact

(t and the contact area (a 
2 )

w t

2 (Jm 2s-) (2)
t Tra

This wave intensity is known to be equal to the applied stress squared

(9) :
divided by the characteristic impedance of the medium (p C

t Ot

Therefore, one can write for the target ....

W t  2

it= 2 - (3)
tita t Otc

d Similary, for the particle F
W 2
p p
P == - - (4)

P t ita PpcOp
c

2 V
As p, t and ffa are the same for the target and particle, they can be

C

eliminated yielding

W = W (-- -- ) (5)p t pPcOp

Therefore, Hunter's formula can be extended as

Ws =W t  (1 + Pco (6)

in which W is given by equa. (1). This equation shows that the impedance

* ratio between the target and the particle has a significant effect on the

impact characteristics.
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III. EFFECT OF THE IMPEDANCE RATIO ON THE

PARTITIONING OF STRESS WAVE ENERGY

If one assumes the particle to have infinite impedance, one derives

the results found by Hunter (), namely

If one assumes the particle and the target to have the same character-

istic impedance, one should find that the total stress wave energy is twice

(10)that induced in the target. Kirchner and Gruver obtained experimental

results consistent with this expectation for impacts of glass spheres on

*glass plates for which the target and particle have the same characteristic

*impedance. Similarly, this result implies a better match between Hunter's

theory and the data of Tillet .In that case the experimental values

* for the coefficient of restitution are lower than predicted by Hunter's

* theory. Introduction of a finite impedance ratio implies a larger stress

wave energy loss, hence a lower coefficient of restitution.

The distribution of the stress wave energy between the particle and

the target varies substantially depending on the properties of the parti-

cular materials. Letting (n) be the ratio of the characteristic impedance

* of the target to that of the particle, equa. (6) becomes

Ws Wt (I +n) (8)

W t 
(9)

and 2. n (0
5 1 +n

sS
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Table I gives the percentages of the total stress wave energy in the target

and the particle for the realistic range of (n). These data have practical

importance in some cases. For example, ceramic armor with a high Young's

modulus (i.e. a high characteristic impedance) is likely to have a high

impedance compared to a given projectile so that substantial stress wave

* energy is induced in the projectile, increasing the likelihood that the

projectile will be destroyed by reflected stress waves. Similarly, inr

* the case of IR windows, high characteristic impedance is a desirable

property for the same reason.

TABLE I

PERCENTAGES OF THE TrOTAL STrRESS WAVE ENERGY IN THE

PARTICLE AND TARGET FOR VARIOUS VALUES OF n

P tc otStress Wave Energy Stress Wave Energy
in the Target in the Particle

Pp c op%%

0.2 83 17
0.4 71 29
0.6 63 37
0.8 56 44
1 50 50
2 33 67

63 25 75
4 20 80
5 17 83
6 14 86
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IV. THE EFFECT OF TARGET AND PARTICLE IMPEDANCE ON THE

AMOUNT OF STRESS WAVE ENERGY PRODUCED DURING IMPACT

Before analyzing the expression for total stress wave energy

developed in Section II (equa. (6)), it is enlightening to analyze in

detail Hunter's formula (equa. (1)) in terms of impedance. A simple

substitution of the value of the target impedance

Zt ='Ett= pt cot (11)

4 in equation (1) yields F
-1/5 3/5 -6/5 2 3/5

2TM R V 2'

wt p m vi (12)

t

This expression cannot be reduced to a simple function of the target

- impedance Wt  f(Zt). Thus, it must be analyzed as a multivariate
t

function dependant upon impedance, density and elastic modulus of both

target and projectile, or formally

Wt = f(Zt, Et, Ep Pt , Pp (13)

To evaluate the behavior of such a function, a study of its "-

projections in various planes is necessary. a. First the projectile

and the incoming velocity are kept constant.(E = 50 109 N/m2, Pp

2000 kg/m 3 V0 = 80 m/s R = .001m), thus insuring constant incoming

energy. With this constraint, the density and elastic constant of the
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target are independantly varied within a range centered around the

projectile characteristics

000O< P < 3000 K m -

9t 9g
30-1 010 N m

The variations of the resulting stress wave energy in the target (W)
t

are then plotted as a function of the density and the elastic constant

* of the target (Fig. 2a and Fig. 2b). These graphs show a behavior consis-

tent with simple wave mechanics; an increase in the density (i.e. mass)

yields more stress wave energy in the form of inertia. On the contrary,

an increasing elastic constant decreases the potential for displacement

(particle velocity) and thus, decreases the energy of the stress wave.

Fig. 2c shows the variation of the stress wave energy in the target

*(W ) as a function of the target impedance. The \ariations at constant

elasticity or constant density are easily traced on this graph. This

* plot also shows that the spread of possible values of the stress wave

energy varies with the impedance, as a relatively larger target impedance

yields less variability than a smaller one. This effect is due to the

relative importance of the target density and elastic modulus in the

impedance, which favors the elastic modulus at high impedance and favors

the density at low impedance.

b. To complete the analysis of the stress wave energy in the target,--

a similar evaluation of Hunter's equation must be made for a constant target.

However, to allow comparison with the previous analysis, one must keep

the same incoming energy. As a consequence, one must vary the incoming -
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Figure 2a. Stress wave energy in target vs. target density for

fixed particle properties and impact energy.6
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Figure 2b. Stress wave energy in target vs. Young's modulus of
target for fixed particle properties and impact energy.
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velocity with the varying particle density according to

V V 10 (14
0

where V 0and P 0 are the velocity and density of the particle in the

previous analysis. With this minor chitnge, the analysis proceeds as

before (Fig. 3a, 3b and 3c). There th~e plot of the stress wave energy

shows little variation with density and a decreasing variation with

the elastic constant. One must remark, however, that the energy developed

in that case is somewhat lower than in the previous case; in particular,

the level of energy varies when the characteristics of the target and

the particle are interchanged.

When the total stress wave energy is considered, two cases must be

distinguished (Fig. 4a and 4b):

a. If the particle characteristics are kepL constant and the

target characteristics are taken as equal to those of the particle,

then the total stress wave energy is double that in the target. As

the target impedance decreases, the total stress wave energy becomes

less than double the target stress wave energy and, conversely, as the

impedance of the target increases, the total stress wave energy is more

than double that of the target. The overall effect is a reduction in

the variation of spread of possible values for the stress wave energy

for various target impedances that were observed earlier (Fig. 2c).

b. When the target characteristics are kept constant, the effect

of the impedance ratio is reversed: low relative particle impedance

yielding a ratio of total stress wave energy to target stress wave

energy larger than 2 while a high relative particle impedance yields

* a ratio lower than 2.
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In conclusion, the analysis of the variations of the total stress 5

wave energy due to impact shows a very complex dependency upon target

and projectile characteristics; in particular, these variations are very

different when the impedance is varied at constant elasticity and when

varied at constant density. In fact these variations are opposite.

Ftirthermore, it can be noted that the asymmetry of the problem (i.e. non

equivalence of energy when target and projectile characteristics are

(11)interchanged) is inherent tc Miller and Pursey (  derivation. the

introduction of the impedance ratio tends to temper this asvmmetry but,

further investigations into the mechanics of the contact should he made

to permit a physical explanation of this phenomenon.

* •

1 D1

* I

* I
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V. COMPARISON OF THE THEORY WITH EXPERIMENTS USING GLASS

Kirchner and Gruver~3  determined the coefficient of restitution for

impacts of glass spheres, 3mm in diameter, on firmly supported soda lime

glass plates. They found that, at room temperature, the coefficient of

restitution remained above 0.9 over a wide range of impact velocities

* (Figure 5). As shown in Figure 6, the present theory which assumes only

* stress wave energy losses yields similar results. The effect of the

temperature dependence of density, Young's modulus and Poisson's ratio,

(12)
* was investigated using data of Duchateau and co-workers .Assuming

only stress wave energy losses, the effect of the variations in these

properties with temperature on the coefficient of restitution is small

(Figure 6). The energy loss varies as the square of the coefficient of

restitution. The variation at 5250C is less than that at 440 0C because

the Poisson's ratio decreases sharply around the annealing temperature

o (12)(500-550 C)

These variations due to the stress wave energy losses do not account

for the large decreases in coefficient of restitution observed at high

velocities at 440 and 525 0C. Therefore, the explanation based on increased

crushing ()remains the only explanation available. At higher temperatures

650 and 720 C, which are above the softening point, the variation of theS

* coefficient of restitution with velocity is different from that observed

at lower temperatures. Lower coefficients of restitution (higher energy

losses) are observed at low impact velocities but the decreases are not

17S
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as great at higher velocities. At these higher temperatures, the glass

deforms viscoelastically to form indentations. Because there is no

threshold velocity or yield point for this viscoelastic deformation, the

effects of the resulting energy losses are observed at all velocities.

Therefore, it is reasonable to conclude that this change in shape of the

coefficient of restitution vs. impact velocity curves is the result of

the introduction of the indentation energy loss mechanism at temperatures

above the softening point.

4 1

II

!b

I S
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APPENDIX A

LIST OF SYMBOLS

a Radius of the area of contact

c C11 Compressional elastic constant of the medium

c 44 Shear elastic constant of the medium

C Op Velocity of a longitudinal wave in a thin rod made of

the same material as the impacting particle (=fEp71)

C Velocity of a longitudinal wave in a thin rod made of

the same material as the target (-=Et/pt )

E Young's modulus of the particleP

E Young's modulus of the target
t

F0( (22 _Y2 ) 2 4 2 (U2 _ 1)(2 . 2 (eq (1))

2 21 t  I p
g Et +- Ep (eq (1))

9E E
t p

grad gradient operator b

gm() Hankel's transform of order m

I Wave intensity in the particle
p

Wave intensity in the target

3 (.) Bessel's function of order m(mcQ)

K 1  W(p /1)

K2  W(pt/c 4 4) _

m Mass of the particleP

m Order of Bessel's function

n Index characteristic of impedance ratio (p tc t/P Cp0 )
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APPENDIX A (continued) |

p Applied stress

Q Set of rational numbers

r Radial dimension of a cylindrical system of coordinates

R Radius of the particle
p

r-07t Rotational operator F

tc Contact time between target and particle

U Vector displacement

u Radial component of the displacement
r

u 0  Angular component of the displacement

u Axial component of the displacement

V Impact velocity .

v Partial function for integration by parts

W Stress wave energy in particLe
p

W t  Stress wave energy in target

W Total stress wave energy
S

w Partial function for integration by parts

Z Target impedance

z Particle impedance
p

z Axial dimension of a cylindrical system of coordinates

* zz Axial stress at the free surface of the sphere

Radial stress at the free surface of the sphere

*

*,
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APPENDIX A (continued)

[ (1-2)) (eq (d))

dilatation (= divergence U div

Hankel's variable

O Angular dimension of a cylindrical system of coordinates .

Lame' constant

, Lame constant

Dummy variable for integration

0 Density of the particle
p

Pt Density of the target

o Poisson's ratio of the particlep

a t  Poisson's ratio of the target

5 (16)6/5

t -0t St5 Oa

w Angular frequency of a periodic phenomenon

v2  Laplacian operator
9

r (r -L) + -12 + in a cylindrical -

system of coordinates

ID

o

A
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APPENDIX B

EQUIVALENCE OF THE STRESS WAVE ENERGY OF A

SEMI-INFINITE SOLID AND SPHERE

Starting from the equation of elasticity

-- >91 grad A -c 4 4 rot W = ;t 2 (15)

in which U is the vector displacement

A = div U is the dilation

W = rot U is the distortion

C = + 2. linear combinations of the

C44 = 1 l.ami constants and j

To account for the time dependence, we assume the dependencr on time

to be harmonic so that (15) becomes

cil grad A c44 rot W +pt U W (16)

This equation projected on the axes z and r of a cylindrtcal system

gives two of the equations necessary for the solution of the problem

of stress waves in a sphere.

Taking the divergence and the curl of equation (16) yields two

additional equations respectively characteristic of A and W. Then,

writing the stress across the free surface gives the last two required

equations. These six equations are listed as follows:

iI I ;

6 3,
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-- +c -+ tu =0 (17)
C

1  
r 44 3z t r

_A + c44  2(rW(
ell - -)- -- - +Ot uz = 0(18)

11 3z r + r t W z

V2 A + pt(A2 A =0 (19)

) -r ) + +  - 0 with 2  (2)
4r r ar 2 2 2 204

2zz W ( 22-2) 3 ( A 4 2A
2 = -1 (ry-) - r r (rr) = (21)

4 4

D- f (rW) 2p 2 A drW (23)2 frr r rrjd (24)c 44 z2

2 l
with Ii ..

c~44

To solve these equations one must eliminate r. This is done by the

Hanker. transform defined as

of(4) r. Of t(r)r Jn(r ) dr (23)

and its inverse

f (r) -- o g m( ) "i (r ) dc (24)

"0where J m(rO) is a Bessel function of thie mth order. Thus, the Hankel•

transform replaces the function f(r) by its transform g m(C) independent

of r. One further advantage of the Hankel's transform is to change

a differentiation into a multiplication as in the case of Laplace's or•

- - - - --.
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Fourier's transforms, and hence, change a partial differential

equation with two variables into a differential equation. In fact,

to take the transform of the derivative of f with respect to r

10r af(r) r J (r) dr (25)

0 ar m

one must do an integration by parts by writing

v r Jm(r) (26a)

dw = af(r) dr (26b)ar

which by differentiation of (26a) and integration of (26b) gives

dv = Cr J M1(r) dr (27a)

w f(r) (27b)

which combined with (26a) and (26b) gives the value of the integral (25)

I

f; r J (r) dr = Er r J (rC1g - f (r) r Jm(r) dr (28)

or

af Jmr a]= Lf(r) r J(r)]- g M(f) (29)

As stated earlier, the Hankel transform has changed the derivativeaf
g r into a multiplication Cg (f) but it has also introduced theboundary conditions 1f(r) r J a(r.)) . In the case of a semi-infinite

I
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solid these boundary conditions vanish. In the case of a sphere, they

are a function of the bulk displacement and bulk distortion of the

sphere. These displacements are due to the deformability of the sphere

which allows the bulk vibrations of the sphere (15) . However, when

the sphere is small, as in the case )f particle impact, the frequency

of the bulk vibrations is high so that they cannot be excited by the

relatively low frequency impact pulse. Therefore, in most cases,

these bulk vibrations can be neglected. If, in addition, we assume

that no plastic deformation occurs in the sphere upon impact, the

boundary conditions introduced by the Hankel's transform vanish as

in the case of a semi-infinite solid. The derivation of the expression

(11)for the displacement thus follows that of Mi|lur and Pursey

S

O

O

•
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